Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(7): e17644, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37501997

RESUMO

In the advance studies, researchers have performed productive research contributions in the field of nanofluid mechanics under various biological assumptions. These contributions are fruitful to understand the applications of nanofluids in the various fields such as hybrid-powered engine, heart-diagnose, to prevent numerous diseases, heat exchanger, pharmaceutical processes, etc. The current analysis explores the combined effects of heat generation and chemical reaction on the peristaltic flow of viscoplastic nanofluid through a non-uniform (divergent) channel. The physical effects of second-order velocity slip, thermal slip and mass slip parameters on the rheological characteristics are also considered. To describe non-Newtonian effects, the Casson fluid is deployed. The greater wavelength assumption and low Reynolds number theory are used to attain the rheological equations. Numerical solutions of these governing equations associated with suitable boundary conditions are obtained via Mathematica symbolic software. The velocity magnitude of Casson fluid is higher than associated with Newtonian fluid. Radiation parameter has a vigorous impact in the reduction (enhancement) of temperature (mass concentration) profile. The porous parameter has a remarkable impact in reduction of temperature and velocity profile. Thermal enhancement is perceived by intensifying the chemical reaction parameter, and opposite inclination is noticed in mass concentration. Temperature has been demonstrated to be increased by increasing the Darcy number. The magnitudes of both axial velocity and temperature distribution are smaller in the presence of second-order velocity slip parameters effect as compared with no-slip condition. The magnitudes of axial velocity and mass (or, nanoparticle) concentration are augmented by accumulating the Prandtl number. A rise in Brownian parameter is noticed to depress the mass concentration. The present study has been used in bio-mechanical processes, nanomaterial devices, heat transfer enhancement, radiators, and electronics cooling systems.

3.
Nanomaterials (Basel) ; 12(19)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36234541

RESUMO

In recent years, the synthesis of ammonia (NH3) has been developed by electrocatalytic technology that is a potential way to effectively replace the Haber-Bosch process, which is an industrial synthesis of NH3. Industrial ammonia has caused a series of problems for the population and environment. In the face of sustainable green synthesis methods, the advantages of electrocatalytic nitrogen reduction for synthesis of NH3 in aqueous media have attracted a great amount of attention from researchers. This review summarizes the recent progress on the highly efficient electrocatalysts based on 2D non-metallic nanomaterial and provides a brief overview of the synthesis principle of electrocatalysis and the performance measurement indicators of electrocatalysts. Moreover, the current development of N2 reduction reaction (NRR) electrocatalyst is discussed and prospected.

4.
Bioengineering (Basel) ; 9(10)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36290555

RESUMO

This research is engaged to explore biological peristaltic transport under the action of an externally applied magnetic field passing through an asymmetric channel which is saturated with porous media. The set of governing partial differential equations for the present peristaltic flow are solved in the absence of a low Reynolds number and long wavelength assumptions. The governing equations are to be solved completely, so that inertial effects can be studied. The numerical simulations and results are obtained by the help of a finite element method based on quadratic six-noded triangular elements equipped with a Galerkin residual procedure. The inertial effects and effects of other pertinent parameters are discussed by plotting graphs based on a finite element (FEM) solution. Trapped bolus is discussed using the graphs of streamlines. The obtained results are also compared with the results given in the literature which are highly convergent. It is concluded that velocity and the number of boluses is enhanced by an increase in Hartmann number and porosity parameter K Increasing inertial forces increase the velocity of flow but increasing values of the porosity parameter lead to a decrease in the pressure gradient. The study elaborates that magnetic field and porosity are useful tools to control the velocity, pressure, and boluses in the peristaltic flow pattern.

5.
Micromachines (Basel) ; 13(10)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36295918

RESUMO

This article describes the incompressible two-dimensional heat and mass transfer of an electrically conducting second-grade fluid flow in a porous medium with Hall and ion slip effects, diffusion thermal effects, and radiation absorption effects. It is assumed that the fluid is a gray, absorbing-emitting but non-scattering medium and the Rosseland approximation is used to describe the radiative heat flux in the energy equation. It is assumed that the liquid is opaque and absorbs and emits radiation in a manner that does not result in scattering. It is considered an unsteady laminar MHD convective rotating flow of heat-producing or absorbing second-grade fluid across a semi-infinite vertical moving permeable surface. The profiles of velocity components, temperature distribution, and concentration are studied to apply the regular perturbation technique. These profiles are shown as graphs for various fluid and geometric parameters such as Hall and ion slip parameters, radiation absorption, diffusion thermo, Prandtl number, Schmidt number, and chemical reaction rate. On the other hand, the skin friction coefficient and the Nusselt number are determined by numerical evaluation and provided in tables. These tables are then analysed and debated for various values of the flow parameters that regulate it. It may be deduced that an increase in the parameters of radiation absorption, Hall, and ion slip over the fluid region increases the velocity produced. The resulting momentum continually grows to a very high level, with contributions from the thermal and solutal buoyancy forces. The temperature distribution may be more concentrated by raising both the heat source parameter and the quantity of radiation. When one of the parameters for the chemical reaction is increased, the whole fluid area will experience a fall in concentration. Skin friction may be decreased by manipulating the rotation parameter, but the Hall effect and ion slip effect can worsen it. When the parameter for the chemical reaction increases, there is a concomitant rise in the mass transfer rate.

6.
Micromachines (Basel) ; 13(10)2022 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-36296103

RESUMO

In this investigation, the compressibility effects are visualized on the flow of non-Newtonian fluid, which obeys the stress-strain relationship of an upper convected Maxwell model in a microchannel. The fundamental laws of momentum and mass conservation are used to formulate the problem. The governing nonlinear partial differential equations are reduced to a set of ordinary differential equations and solved with the help of the regular perturbation method assuming the amplitude ratio (wave amplitude/half width of channel) as a flow parameter. The axial component of velocity and flow rate is computed through numerical integration. Graphical results for the mean velocity perturbation function, net flow and axial velocity have been presented and discussed. It is concluded that the net flow rate and Dwall increase in case of the linear Maxwell model, while they decrease in case of the convected Maxwell model. The compressibility parameter shows the opposite results for linear and upper convected Maxwell fluid.

7.
Micromachines (Basel) ; 13(10)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36296121

RESUMO

The intention of this study is to carry out a numerical investigation of time-dependent magneto-hydro-dynamics (MHD) Eyring-Powell liquid by taking a moving/static wedge with Darcy-Forchheimer relation. Thermal radiation was taken into account for upcoming solar radiation, and the idea of bioconvection is also considered for regulating the unsystematic exertion of floating nanoparticles. The novel idea of this work was to stabilized nanoparticles through the bioconvection phenomena. Brownian motion and thermophoresis effects are combined in the most current revision of the nanofluid model. Fluid viscosity and thermal conductivity that depend on temperature are predominant. The extremely nonlinear system of equations comprising partial differential equations (PDEs) with the boundary conditions are converted into ordinary differential equations (ODEs) through an appropriate suitable approach. The reformed equations are then operated numerically with the use of the well-known Lobatto IIIa formula. The variations of different variables on velocity, concentration, temperature and motile microorganism graphs are discussed as well as force friction, the Nusselt, Sherwood, and the motile density organism numbers. It is observed that Forchheimer number Fr decline the velocity field in the case of static and moving wedge. Furthermore, the motile density profiles are deprecated by higher values of the bio convective Lewis number and Peclet number. Current results have been related to the literature indicated aforementioned and are found to be great achievement.

8.
Micromachines (Basel) ; 13(9)2022 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-36144038

RESUMO

Curved veins and arteries make up the human cardiovascular system, and the peristalsis process underlies the blood flowing in these ducts. The blood flow in the presence of hybrid nanoparticles through a tapered complex wavy curved channel is numerically investigated. The behavior of the blood is characterized by the Casson fluid model while the physical properties of iron (Fe3O4) and copper (Cu) are used in the analysis. The fundamental laws of mass, momentum and energy give rise the system of nonlinear coupled partial differential equations which are normalized using the variables, and the resulting set of governing relations are simplified in view of a smaller Reynolds model approach. The numerical simulations are performed using the computational software Mathematica's built-in ND scheme. It is noted that the velocity of the blood is abated by the nanoparticles' concentration and assisted in the non-uniform channel core. Furthermore, the nanoparticles' volume fraction and the dimensionless curvature of the channel reduce the temperature profile.

9.
Front Chem ; 10: 1089080, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36733611

RESUMO

The current work presents and discusses a numerical analysis of improving heat transmission in the receiver of a parabolic trough solar collector by introducing perforated barriers. While the proposed approach to enhance the collector's performance is promising, the use of obstacles results in increased pressure loss. The Computational Fluid Dynamics (CFD) model analysis is conducted based on the renormalization-group (RNG) k-ɛ turbulent model associated with standard wall function using thermal oil D12 as working fluid The thermo-hydraulic analysis of the receiver tube with perforated obstacles is taken for various configurations and Reynolds number ranging from 18,860 to 81,728. The results are compared with that of the receiver without perforated obstacles. The receiver tube with three holes (PO3) showed better heat transfer characteristics. In addition, the Nusselt number (Nu) increases about 115% with the increase of friction factor 5-6.5 times and the performance evaluation criteria (PEC) changes from 1.22 to 1.24. The temperature of thermal oil fluid attains its maximum value at the exit, and higher temperatures (462.1 K) are found in the absorber tube with perforated obstacles with three holes (PO3). Accordingly, using perforated obstacles receiver for parabolic trough concentrator is highly recommended where significant enhancement of system's performance is achieved.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...